Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 83(24): 4095-4111, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37729426

RESUMEN

Non-small lung cancers (NSCLC) frequently (∼30%) harbor KRAS driver mutations, half of which are KRASG12C. KRAS-mutant NSCLC with comutated STK11 and/or KEAP1 is particularly refractory to conventional, targeted, and immune therapy. Development of KRASG12C inhibitors (G12Ci) provided a major therapeutic advance, but resistance still limits their efficacy. To identify genes whose deletion augments efficacy of the G12Cis adagrasib (MRTX-849) or adagrasib plus TNO155 (SHP2i), we performed genome-wide CRISPR/Cas9 screens on KRAS/STK11-mutant NSCLC lines. Recurrent, potentially targetable, synthetic lethal (SL) genes were identified, including serine-threonine kinases, tRNA-modifying and proteoglycan synthesis enzymes, and YAP/TAZ/TEAD pathway components. Several SL genes were confirmed by siRNA/shRNA experiments, and the YAP/TAZ/TEAD pathway was extensively validated in vitro and in mice. Mechanistic studies showed that G12Ci treatment induced gene expression of RHO paralogs and activators, increased RHOA activation, and evoked ROCK-dependent nuclear translocation of YAP. Mice and patients with acquired G12Ci- or G12Ci/SHP2i-resistant tumors showed strong overlap with SL pathways, arguing for the relevance of the screen results. These findings provide a landscape of potential targets for future combination strategies, some of which can be tested rapidly in the clinic. SIGNIFICANCE: Identification of synthetic lethal genes with KRASG12C using genome-wide CRISPR/Cas9 screening and credentialing of the ability of TEAD inhibition to enhance KRASG12C efficacy provides a roadmap for combination strategies. See related commentary by Johnson and Haigis, p. 4005.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación
2.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131623

RESUMEN

LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE: Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.

3.
J Thorac Oncol ; 18(7): 882-895, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36958689

RESUMEN

INTRODUCTION: In KRAS-mutant NSCLC, co-occurring alterations in LKB1 confer a negative prognosis compared with other mutations such as TP53. LKB1 is a tumor suppressor that coordinates several signaling pathways in response to energetic stress. Our recent work on pharmacologic and genetic inhibition of histone deacetylase 6 (HDAC6) revealed the impaired activity of numerous enzymes involved in glycolysis. On the basis of these previous findings, we explored the therapeutic window for HDAC6 inhibition in metabolically-active KRAS-mutant lung tumors. METHODS: Using cell lines derived from mouse autochthonous tumors bearing the KRAS/LKB1 (KL) and KRAS/TP53 mutant genotypes to control for confounding germline and somatic mutations in human models, we characterize the metabolic phenotypes at baseline and in response to HDAC6 inhibition. The impact of HDAC6 inhibition was measured on cancer cell growth in vitro and on tumor growth in vivo. RESULTS: Surprisingly, KL-mutant cells revealed reduced levels of redox-sensitive cofactors at baseline. This is associated with increased sensitivity to pharmacologic HDAC6 inhibition with ACY-1215 and blunted ability to increase compensatory metabolism and buffer oxidative stress. Seeking synergistic metabolic combination treatments, we found enhanced cell killing and antitumor efficacy with glutaminase inhibition in KL lung cancer models in vitro and in vivo. CONCLUSIONS: Exploring the differential metabolism of KL and KRAS/TP53-mutant NSCLC, we identified decreased metabolic reserve in KL-mutant tumors. HDAC6 inhibition exploited a therapeutic window in KL NSCLC on the basis of a diminished ability to compensate for impaired glycolysis, nominating a novel strategy for the treatment of KRAS-mutant NSCLC with co-occurring LKB1 mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/uso terapéutico , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Mutación
4.
Biomolecules ; 13(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671538

RESUMEN

Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.


Asunto(s)
Difosfatos , Inositol , Transducción de Señal , Fosforilación
5.
Clin Cancer Res ; 28(17): 3824-3835, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802677

RESUMEN

PURPOSE: Lung adenocarcinoma (LUAD) is a clinically heterogeneous disease, which is highlighted by the unpredictable recurrence in low-stage tumors and highly variable responses observed in patients treated with immunotherapies, which cannot be explained by mutational profiles. DNA methylation-based classification and understanding of microenviromental heterogeneity may allow stratification into clinically relevant molecular subtypes of LUADs. EXPERIMENTAL DESIGN: We characterize the genome-wide DNA methylation landscape of 88 resected LUAD tumors. Exome sequencing focusing on a panel of cancer-related genes was used to genotype these adenocarcinoma samples. Bioinformatic and statistical tools, the immune cell composition, DNA methylation age (DNAm age), and DNA methylation clustering were used to identify clinically relevant subgroups. RESULTS: Deconvolution of DNA methylation data identified immunologically hot and cold subsets of LUADs. In addition, concurrent factors were analyzed that could affect the immune microenvironment, such as smoking history, ethnicity, or presence of KRAS or TP53 mutations. When the DNAm age was calculated, a lower DNAm age was correlated with the presence of a set of oncogenic drivers, poor overall survival, and specific immune cell populations. Unsupervised DNA methylation clustering identified six molecular subgroups of LUAD tumors with distinct clinical and microenvironmental characteristics. CONCLUSIONS: Our results demonstrate that DNA methylation signatures can stratify LUAD into clinically relevant subtypes, and thus such classification of LUAD at the time of resection may lead to better methods in predicting tumor recurrence and therapy responses.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/genética , Metilación de ADN , Humanos , Neoplasias Pulmonares/patología , Mutación , Microambiente Tumoral
6.
Arterioscler Thromb Vasc Biol ; 41(2): e112-e127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33327743

RESUMEN

OBJECTIVE: Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown. Approach and Results: Seventeen-weeks-old ApoE-/- and TSP-1-/-/ApoE-/- double knockout mice, on normocholesterolemic diet, were treated with or without murine recombinant leptin (5 µg/g bwt, IP) once daily for 3 weeks. Using aortic root morphometry and en face lesion assay, we found that TSP-1 deletion abrogated leptin-stimulated lipid-filled lesion burden, plaque area, and collagen accumulation in aortic roots of ApoE-/- mice, shown via Oil red O, hematoxylin and eosin, and Masson trichrome staining, respectively. Immunofluorescence microscopy of aortic roots showed that TSP-1 deficiency blocked leptin-induced inflammatory and smooth muscle cell abundance as well as cellular proliferation in ApoE-/- mice. Moreover, these effects were concomitant to changes in VLDL (very low-density lipoprotein)-triglyceride and HDL (high-density lipoprotein)-cholesterol levels. Immunoblotting further revealed reduced vimentin and pCREB (phospho-cyclic AMP response element-binding protein) accompanied with augmented smooth muscle-myosin heavy chain expression in aortic vessels of leptin-treated double knockout versus leptin-treated ApoE-/-; also confirmed in aortic smooth muscle cells from the mice genotypes, incubated ± leptin in vitro. Finally, TSP-1 deletion impeded plaque burden in leptin-treated ApoE-/- on western diet, independent of plasma lipid alterations. CONCLUSIONS: The present study provides evidence for a protective effect of TSP-1 deletion on leptin-stimulated atherogenesis. Our findings suggest a regulatory role of TSP-1 on leptin-induced vascular smooth muscle cell phenotypic transition and inflammatory lesion invasion. Collectively, these results underscore TSP-1 as a potential target of leptin-induced vasculopathy.


Asunto(s)
Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Trombospondina 1/deficiencia , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/inducido químicamente , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Aterosclerosis/patología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colágeno/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Leptina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Placa Aterosclerótica , Transducción de Señal , Trombospondina 1/genética
7.
Proc Natl Acad Sci U S A ; 117(32): 19245-19253, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32727897

RESUMEN

Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Fosfatos de Inositol/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Células HEK293 , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Caperuzas de ARN/genética , Estabilidad del ARN , ARN Mensajero/genética
8.
Proc Natl Acad Sci U S A ; 117(7): 3568-3574, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019887

RESUMEN

Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (Kd = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Transducción de Señal , Receptor de Retrovirus Xenotrópico y Politrópico
9.
Sci Rep ; 7: 45279, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28345659

RESUMEN

Increasing evidence suggests thrombospondin-1 (TSP-1), a potent proatherogenic matricellular protein, as a putative link between hyperglycemia and atherosclerotic complications in diabetes. We previously reported that the micronutrient chromium picolinate (CrP), with long-standing cardiovascular benefits, inhibits TSP-1 expression in glucose-stimulated human aortic smooth muscle cells in vitro. Here, we investigated the atheroprotective action of orally administered CrP in type 1 diabetic apolipoprotein E-deficient (ApoE-/-) mice and elucidated the role of TSP-1 in this process. CrP decreased lipid burden and neointimal thickness in aortic root lesions of hyperglycemic ApoE-/- mice; also, smooth muscle cell (SMC), macrophage and leukocyte abundance was prevented coupled with reduced cell proliferation. Attenuated lesion progression was accompanied with inhibition of hyperglycemia-induced TSP-1 expression and reduced protein O-glycosylation following CrP treatment; also, PCNA and vimentin (SMC synthetic marker) expression were reduced while SM-MHC (SMC contractile marker) levels were increased. To confirm a direct role of TSP-1 in diabetic atherosclerosis, hyperglycemic TSP-1-/-/ApoE-/- double knockout mice were compared with age-matched hyperglycemic ApoE-/- littermates. Lack of TSP-1 prevented lesion formation in hyperglycemic ApoE-/- mice, mimicking the atheroprotective phenotype of CrP-treated mice. These results suggest that therapeutic TSP-1 inhibition may have important atheroprotective potential in diabetic vascular disease.


Asunto(s)
Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Ácidos Picolínicos/farmacología , Estreptozocina/farmacología , Trombospondina 1/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aterosclerosis/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/metabolismo , Glucosa/metabolismo , Glicosilación/efectos de los fármacos , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/efectos de los fármacos
10.
Am J Physiol Cell Physiol ; 311(2): C212-24, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281481

RESUMEN

We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Leptina/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Sitios de Unión/genética , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica/genética , Humanos , Mutagénesis Sitio-Dirigida/métodos , Regiones Promotoras Genéticas/genética , Elementos de Respuesta/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Transfección/métodos , Regulación hacia Arriba/genética
11.
Nanoscale ; 8(12): 6542-54, 2016 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-26935414

RESUMEN

Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-ß (TGF-ß) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/tratamiento farmacológico , Cloruros/química , Compuestos de Cromo/química , Comovirus , Hiperglucemia/metabolismo , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/terapia , Compuestos Azo/química , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Sistemas de Liberación de Medicamentos , Glucosa/química , Humanos , Lípidos/química , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , FN-kappa B/metabolismo , Nanopartículas/química , Antígeno Nuclear de Célula en Proliferación/química , Espectrofotometría Ultravioleta , Factor de Crecimiento Transformador beta/metabolismo
12.
Am J Physiol Cell Physiol ; 308(2): C111-22, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25354527

RESUMEN

Trivalent chromium (Cr(3+)) is a mineral nutrient reported to have beneficial effects in glycemic and cardiovascular health. In vitro and in vivo studies suggest that Cr(3+) supplementation reduces the atherogenic potential and lowers the risk of vascular inflammation in diabetes. However, effects of Cr(3+) in vascular cells under conditions of hyperglycemia, characteristic of diabetes, remain unknown. In the present study we show that a therapeutically relevant concentration of Cr(3+) (100 nM) significantly downregulates a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in human aortic smooth muscle cells (HASMC) stimulated with high glucose in vitro. Promoter-reporter assays reveal that this downregulation of TSP-1 expression by Cr(3+) occurs at the level of transcription. The inhibitory effects of Cr(3+) on TSP-1 were accompanied by significant reductions in O-glycosylation of cytoplasmic and nuclear proteins. Using Western blotting and immunofluorescence studies, we demonstrate that reduced protein O-glycosylation by Cr(3+) is mediated via inhibition of glutamine: fructose 6-phosphate amidotransferase, a rate-limiting enzyme of the hexosamine pathway, and O-linked N-acetylglucosamine (O-GlcNAc) transferase, a distal enzyme in the pathway that controls intracellular protein O-glycosylation. Additionally, we found that Cr(3+) attenuates reactive oxygen species formation in glucose-stimulated HASMC, suggesting an antioxidant effect. Finally, we report an antiproliferative effect of Cr(3+) that is specific for high glucose and conditions triggering elevated protein O-glycosylation. Taken together, these findings provide the first cellular evidence for a novel role of Cr(3+) to modulate aberrant vascular smooth muscle cell function associated with hyperglycemia-induced vascular complications.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cromo/farmacología , Glucosa/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trombospondina 1/antagonistas & inhibidores , Aorta/efectos de los fármacos , Aorta/metabolismo , Proliferación Celular/genética , Células Cultivadas , Fructosafosfatos/metabolismo , Glutamina/genética , Glicosilación/efectos de los fármacos , Hexosaminas/metabolismo , Humanos , Hiperglucemia/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , N-Acetilglucosaminiltransferasas/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Trombospondina 1/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...